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Gz generator matrix elements for degenerate 
representations in an SU(3) basis” 
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Department of Physics, McGiU Univenity, Monueal. Quebec, H3A ZT8. Canada 

Received 6 July 1993, in final form 23 November 1993 

Abstract Basis states and generator matrix elemenls are given for the degenerate 
representations (a, 0) and (0. b) of G2 in an S U ( 3 )  basis. We show that for any compact 
Lie p u p  the elementary unwanted states, and hence incompatibilities between fundamental 
basis states in the characler generator, are all of degree 2. 

1. Introduction 

In case the reader needs to be convinced that generator matrix elements are useful we 
quote a statement of Chacdn and Moshinsky (1987) in a paper dealing with S p ( 6 )  and the 
nuclear symplectic model: ‘One of the important problems in Lie algebras is to determine 
the matrix representation of their generators in a basis associated with a given irrep of the 
corresponding group.’ 

In this paper we develop the concept of basis states of irreducible representations for 
which the character generator of the group in question provides an integrity basis; usually 
the chaqcter generator is interpreted as yielding just the weights or characters of IRs. We 
propose that the states so defined be christened ‘character states’. We believe them to be 
the most natural and simplest states for general use, in particular for computing generator 
matrix elements. Analogous states were used by Burdik et al (1992) for the degenerate 
representations (0, 0, c)  of SO(7) in an S w 3  basis (see also de Guise and Sharp 1991 
for a case with a finite subgroup). 

As a further example of their use we consider here the degenerate representations (a. 0) 
and (0, b) of GI 3 S U ( 3 ) ,  for which there is no missing label problem. We postpone for 
now the treatment of the generic representations (a. b)  with a and b both non-zero. 

Basis states and generator matrix elements for Gz in an SU(3)  basis have been given by 
Sviridov, Smirnov and Tolstoy (1975). Their states are obtained by operating on the highest 
state of the G2 representation with a product of powers of lowering short root generators 
and then projecting out the highest state of the S U ( 3 )  IR whose highest state has that weight. 
Thus they obtain an overcomplete set of SLr(3) IRs. By restricting the exponents of the 
lowering generators they retain a complete non-redundant set; the superfluous states are 
expressed as linear combinations of the complete ones. When a generator is applied to a 
member of the complete set to obtain its matrix elements superfluous states are reached and 
must be expressed back in terms of the complete set. We believe our methods are superior 
and simpler (but 18 year later). 

* Research supported in part by the Natural Sciences and Engineering Research Council of Canada and by the 
Fonds du FCAR du Qu6bec. 
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The groupsubgroup Gz 3 SU(3)  does not seem to be used directly in physics. 
However the group chain SO(7) 3 Gz 2 SO(3)  was introduced by Racah (1951) for 
the study of atomic electrons. We quote Judd (1968): 'The use of Gz is an imponant 
feature of Racah's analysis and is largely responsible for the progress that has been made 
during the last decade in the analysis of actinide and rareearth spectra.' For relevant 
generator matrix elements of SO(7) one needs (according to the Wigner-%kart theorem) 
only reduced matrix elements of a Gz septet tensor and Gz Clebsch-Gordan coefficients in 
an SO(3) basis. The reduced matrix elements do not depend on internal Gz labels and may 
be computed using the simplest Gz basis states, say the character states for Gz 2 S U ( 3 )  
described in this paper. 

Section 2 deals with basis states for (a,O) and (0,b) representations. In section 3 the 
generator matrix elements are derived. Section 4 contains some concluding remarks. In 
the appendix, it is proved that elementary unwanted states for any compact Lie group, and 
hence incompatibilities in the character generator, are all of degree 2. 

2. Basis states for degenerate representations of Gz 3 SV(3)  

The necessary ingredients for the calculation of Gz 3 S U ( 3 )  basis states and generator 
matrix elements between them are the Gz 3 SU(3) branching rules generating function and 
the character generator for Gz. 

The generating function for Gz 3 SU(3)  branching rules is (Gaskell et al 1978) 
1 

( 1  - A P ) ( l  - A Q ) ( l  - B P ) ( I  - B Q )  G(A, B ;  P ,  Q) = 

The dummy variables A, B carry the Gz representation labels a, b as exponents and P ,  Q 
carry the SU(3)  representations labels p ,  q .  The power series expansion 

G = A ~ B ~ P ~ Q ~ c ~ ~ ~ ~  (2.2) 
o . b . m  

gives the multiplicity cab&, of the SU(3)  representation ( p ,  q )  in the G2 representation 
(a, 6). Here (1,O) is the septet and (0, 1) the 14-plet representation of Gz. But equation (2.1) 
does more than count SU(3)  multiplicities; we interpret A P  - q ,  A Q  N C', A - 0, 
B P  - h, B Q  - U*, B P Q  - cf as the highest states of the appropriate SU(3)  representations 
contained in the fundamental Gz representations (see figure 1); the highest state of any 
S U ( 3 )  representation contained in any Gz representation is then given by the appropriate 
product of powers of them. Other SU(3) states are obtained by applying SU(3)  lowering 
generators, 

The basis states of the GZ representation (a, b)  are polynomials of degrees a, b in the 
states of the respective fundamental representations. That means that only stretched IRs 

r* .a 
V* 

P .  

5 .  .a. 

5 d". *P* 
Figure 1. The basis slates of he GI fundamental represenlalions (1.0) and (0, I ) .  
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(representation labels additive) in the direct product of a copies of (1,O) and b copies of 
(0, 1)  are to be retained. 

Consider the quadratic direct products 

(1, = (2.  oh7 + (0,O)i (2.3n) 

(0, 1)&, = (0,2)77 f (2,  o h 7  + (0, O)I (2.3b) 

(190) x (0,  1)98 = (11 1)64 + ( 2 ,  o h 7  f (1, O h .  ( 2 . 3 ~ )  

The square of a representation above means the symmetric (polynomial) part of the direct 
product of two copies. A subscript on a representation or product is its dimension. The 
stretched part of each product is the first representation on the right. The states of all the 
other representations are unwanted for the purpose of forming our polynomial basis. 

To deal consistently with the unwanted states we need the help of the G2 character 
generator (Gaskell 1983, Gaskell and Sharp 1981). With the character generator interpreted 
as providing an integrity basis for basis states we see that certain pairs of fundamental 
representation basis states never appear multiplied; each such incompatible pair appears as 
a term in exactly one unwanted state (or more than one appear in the same number of 
unwanted states all of the same weight). Equating all the unwanted states to zero enables 
us to solve for each incompatible pair in terms of pairs that are compatible according to 
the character generator. Whenever an incompatible pair appears as a result of applying a 
generator to another state we eliminate it by means of these incompatibility equations. 

It is shown in the appendix that the elementary unwanted IRS are all of degree 2, a fact 
verified straightforwardly in the case of G2. 

We remark that although our states correspond one-to-one to all states of all 
Gz representations they are still contaminated by unwanted states belonging to lower 
representations; that does not matter for the purpose of computing generator matrix elements. 

We deal first with (a ,O)  basis states. The relevant G? 3 SU(3) branching rules 
generating function (see equation (2.1)) is 

1 
(1 - A)(1 - A P ) ( l  - A & )  G ( A ,  0; P, Q) = (2.4) 

from which we conclude that the highest state of the SU(3) representation ( p ,  q) in the Gz 
representation (a, 0) is (we suppress the GI labels) 

the internal SU(3) labels are respectively t, m, y, with the isospin labels doubled to avoid 
half-odd values. The normalization constant Np4 will be determined in section 3. Other 
states are determined by applying lowering SU(3) generators to (2.5). In differential form, 
suitable for operating on (2.5), they are 

= ga, - q*ap 
= rat -tea,. 
= {a, - q*a(... 

The branching rules implied by (2.5) are 0 < p + q < U .  

The character generator for (a,  0) representations is (Gaskell and Sharp 1981) 

(2.7) 
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where we have adopted the space-saving convention that a variable in the denominator 
stands for unity minus that variable. In (2.7) the variables may be regarded as representing 
the seven states of the fundamental Gz representation (1,O) (see figure I ) ,  or alternatively, as 
products of dummy variables carrying the Gz representation labels and weight components 
as exponents. Then we have 

I 7 = A U - ~ T  t = AU*T-' = Au- 
(2.8) 

where U ,  T carry the Gz weight components in a fundamental weights basis. According 
to (2.7) there is just one incompatible pair, $(*. 

Also, according to (2 .3~)  there is just one unwanted state, the GI scalar on the right-hand 
side. It is 

f = AUT-' e* = A u - ~ z  {' = Au e = A  

M = qrl* + c f *  + Ct' + $3'. (2.9) 

Accordingly we eliminate (t* whenever it arises by the replacement 

tt' + - VI* - tt ' - $eZ. (2.10) 

For (0, b) representations the character generator of Gz is (Gaskell and Sharp 1981) 

CY B' Y f f Y  +-+- +-+- B -- ' [ I  +- 
V V ' 6  CY*y'K BY'K (YBK CY*B*K P Y K  CYYK 

A' &* A'&* Y &' & U& +-+-+- +-+-+- 
cu*y*A' ol*B*&* a'A*&' p y p '  By'& C Y ~ &  

+-+- A yA A*& AA* +-+-+- 
ciA& a y h  yak*& U*& Ah'&* YAK* A&* +*I. (2.11) 

The variables in (2.1 1) are the 14 basis states of the fundamental representation (0, 1) (see 
figure 1). Again a variable in the denominator means one minus that variable. Each variable 
can also be interpreted as a product of powers of dummy variables 

C Y = B T  CY* = ET-' B = Bu3T-' p' = B u - ~ T  

y = Bu-~T' y* = Bu3s-' 6 = BT? K = B  

A = BU-'T A* = BUT-' g = B U ~ T - ~  gw = B ~ T  
(2.12) 

v = Ea-' v ' = B u .  

In deriving equation (2.11), we followed Caskell and Sharp (1981) in substituting the 
SU(3) character generator into the G2 3 S U ( 3 )  branching rules generating function; but 
in the SU(3) character we kept a dummy T carrying as its exponent the SU(2)  (isospin) 
representation label. In (2.12) we retained this T dependence only for 6 and K as a means of 
distinguishing them; thus 6 is the m = 0 member of an S U ( 2 )  triplet, while K is an SU(2) 
singlet. The compatibility table, obtained by examination of (2.11). is shown in figure 2. 
The 28 incompatible pairs correspond to the unwanted states of the representations (2,O) 
(dimension 27) and (0.0) (dimension 1) on the right-hand side of equation (2.3b). 

We have determined the 28 unwanted states, set each of them equal to zero. and solved 
for each incompatible pair. We give seven of the resulting replacements; ones actually 
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a 

Figure Z Incompatibility table. Each incompatible pair of 
(0. I )  states is marked with a cross. 

needed in section 3 

(2.13) 

These substitutions are to be made whenever an incompatible pair arises during our 
computations. 

The G2 3 SU(3)  branching rules generating function for (0,b) representations is 
(=e (2.1)) 

1 
( 1  - BP)(1 - BQ)(l - BPQ) G(0, B ;  P, Q) = 

from which we see that the highest state of the SU(3)  representation ( p .  q )  is 

(2.14) 

(2.15) 

We have suppressed the Gz representation label. The normalization constant Npq will be 
determined in section 3. The branching rules implied by (2.15) are p + q 2 b 2 p ,  q.  
States other than the highest of SU(3)  representations are obtained by applying lowering 
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SU(3) generators to (2.15). In differential form they are 

= Ba, - d a a .  + waA - i*a,. + 21/2(6a, - y*as) 
6112 2112 

,5112 2i/z 

2 2 

E32=Yau -cr*ay.+va,-~L'a,.+-(Ka,-B'a,)+--(sa,-B*as) 2 2 (2.16) 

E31 = y'ap - B*a, + vaA - i*av + -@a, -ana,) + -(a*ab -sa,), 

3. The generator matrix elements 

We now calculate generator matrix elements with respect to the ( U ,  0) basis states (2.5) and 
the (0, b)  basis states (2.15) and, incidentally, determine the normalization constants Npq 
in both cases. 

The matrix elements of the eight SU(3)  generators are well known (Gel'fand and Zetlin 
1950); the other six GZ generators form two SU(3)  tensors and G(O1) which transform 
by the indicated SU(3) representations. According to the SU(3)  Wigner-Eckart theorem 
the matrix elements of G(Io) are given in terms of its reduced matrix elements by 

x [(PZ + w 7 z  + I)(P2 + q2 + 2 ) / 2 ] y 2  , (3.1) 
Here ( Pi 41 ; 1 0  I PI42 ) 

tl mi YI f m y t2 mz y2 

is an SU(3)  Clebsch-Gordan coefficient (for a formula see Moshinsky (1962), Resnikoff 
(1967) or Asherova and Smirnov (1968)). Thus it is necessary for us to give only the reduced 
matrix elements ( PZ q2 II @lo) II PI 41 ) where ( ~ 2 ,  42) is (PI + 1, a), (PI - I ,  41 + 1) or 
( p l ,  q1 - 1 ) .  A formula similar to (3.1) exists for matrix elements of G(O'). Because 
G(Io) and G"') are Hermitian conjugate tensors (G$l!z13 = G ~ ~ ~ ~ 2 , 3 ,  G\!y!i,3 = Gi:!)l,-i,3, 

- Gi:!/,,/3 = G!o;!-l/3), (P I  41 II II PI 41 ) within a 
sign. 

II PZ qz ) is equal to ( PZ 42 II 

We deal first with (a, 0) generator matrix elements. In differential form we have 

~ g & ~ ~  = vac. -fa,. + z1Iz(ea~ - c*ae). (3.2) 
Applying it to the state (2.5) we find immediately that 

( 3 . 4 4  
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(3.46) 

Equating the matrix elements in (3.3) and ( 3 . 4 ~ )  gives a simple recurrence relation for 

with the initial condition 

Np,.-p = [p!(u - p) ! ] - ' / * .  (3.6) 

= Np,n-pqP<*a-P contains no unwanted states and is easily (The state I p  p 0 - p  
normalized.) V?e find 

] i /2 .  (3.7) = [ Z " - P - s ( a  t 2)!p!q! (a  - p - q)!(a + p + q + 4)! 
(2n + 4)!(p  + 4 + 2)! 

Np,q normalizes the wanted part of the state (2.5), which, incidentally, has not been isolated. 
With NP,( given by (3.7) we have explicit expressions for the matrix elements in ( 3 . 4 ~ )  

and for the corresponding ones involving G:&. For the desired reduced matrix elements 
we find 

( P q - 1  I I G " " I / ~ ~ ) = ( P ~  ] ~ G ( o l ) ~ ~ ~ q - ~ )  

= - [ (P  + 1)q(q + l)(a - p - 4 + l)(a + p + 4 + 4)/2]"2 ( 3 . 8 ~ )  

( P + l q  / / G ( l " / ( ~ q ) = ( ~ q  / ( G " ' ) / ( p + l q )  

=[(P+ l ) ( P + 2 ) ( q +  I ) ( Q - p - q ) ( U + p + 4 + 5 ) / 2 ] i ' 2  (3.8b) 

( P  - 1 + 1 11 G(Io) 11 p 4 )  = - ( p  g // G'O" I/ p - 1 q + 1 )  

+ l ) (q  + 2)(P + 9 + 2)/21' /* .  ( 3 . 8 ~ )  

We tum to the case of (0, b)  generator matrix elements, following the same procedure as 
for (a, 0). In differential form we have 

= - [ P ( P  + 

G $ ! ~ / ~  = 2 W a ,  - z1 /2Ka,  - 3 ' / 2 ~ a A  + 31/2~*a,. - zna,. + zFai. 

+31/2p*ap - 3 1 / 2 ~ a , ,  (3.9) 

Applying it to the state (2.15) yields immediately 

= -3'/'(b - q)- NP4 , (3.10) 
"1 

P q t l  
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(p+?4+2)/3 ) is algebraically more complicated than for 
the (a, 0) case, and we needed Madkmatica to help us implement it. We find (using (2.13)) 
The application of Ga0~_,/, 110) to I P P+I 

P 4  P q + 1  I ';'h I p p ( p  + 2q + 2)/3 

(3.1 la)  

(3.11b) 

(3 .11~)  

Equating the matrix elements in (3.10) and (3.1 la )  gives a recurrence relation for Np.y  

which, iterated out to q = b (4's largest value according to (2.15)). yields 

(2b + 2)!p!(q + 1)!(2b + p + 3)! (p  + 4 + 2)!  
(b  + l ) ! (b  + p + 2)!(b + q + 2)!(b - q ) ! ( p  + q - b)!  1 

1 

[(b + p + q + 3)!]'/' ' 
X (3.13) 

I (p+zb) /3  p b  ) = Np,bu'b-P~P is still contaminated with unwanted states. To normalize it 
we equate 

and 

( p p ( p  p b  + 2b)/3 I G(o') 1.-171/3 I P +  1 p + l ( p + 2 b +  1)/3 
p + l b  

(3.14) 
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with the initial condition 

Nb,b = b!-'/'. (3 .15 )  

(The state I bbbbb) = Nb,bf fb  contains nothing unwanted and is easily normalized). The 
solution is 

(36 + 3 ) ! ( p  + 1) 
3b-p(b+ I)!@ - p ) ! ( 2 b  + p + 3 ) !  

(3.16) 

and from (3.13) we get 

(26 + 2)!(3b + 3)!(p + l ) ! ( q  + l)!(p + q + 2 ) !  'I2 1 1 
Np'q = (32b-p-q)1/z(b + l)! (b - p)! (b  - q)!(b + p + 2)! (b  + q + 2)!  

(3.17) 
1 [ ( p + q  -b) ! (b  + p + q  + 3)! 

As a check on (3.17) we normalize explicitly the wanted part of the state 

(3.18) 

belonging to the G2 representation (0,2). The wanted part of (3.18) is (subtract the multiple 
of the unwanted state 

as - 3py AV' + -Rx + - 6'f2 3(2'/') 
2 2 

that leaves the result orthogonal to the unwanted state) 

(3.19) 

from which we see N1,j = in agreement with NP,*, equation (3.17) with p = q = 1, 
b = 2.  

With Np.q given by (3.17) we have explicit expressions for the matrix elements in 
(3.1 la) and for the corresponding ones involving Gt&. We find for the desired reduced 
matrix elements 
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4. Concluding remarks 

We have defined the matrix elements of a generator G between states la) and Ib) of a 
complete non-redundant set as (blGla) = coefficient of Ib) in Gla). As long as the states 
are orthonormal this is equivalent to the usual definition (blGla) = overlap of Ib) with 
Gla); this is the case when the subgroup used to define the states provides a complete set 
of labels, as for the states we deal with in this article. 

In a future paper we hope to treat generic representations of Gz in  an SU(3)  basis: there 
is then a missing label. There is no real need to orthonormalize the states. The matrices 
obtained can be multiplied in the usual way and functions of them, as for example an energy 
operator in the enveloping algebra, can be diagonalized in the usual way. 

The basis states are defined as the ‘wanted’ parts of products of powers of mutually 
compatible sets of basis states of the fundamental representations. Mutually compatible 
means they all appear in the same term of the character generator. As will be shown in the 
appendix, the elementary incompatibilities are between pairs only of states, or, equivalently, 
elementary unwanted factors represent states that are quadratic in the basis states of the 
fundamental representations. When the incompatibilities are known the complete character 
generator can be written down straightforwardly. It will be interesting to see whether a 
consistent set of incompatibilities and hence the complete character generator for a group 
can be obtained by looking only at representations with two labels at a time that is non-zero. 

Appendix. The degrees of elementary unwanted states 

Polynomials in the states of the fundamental representations of a simple Lie group G can 
be decomposed according to imeducible representations of G. According to Canan (1894) 
the stretched (representation labels additive) part of the product of hi copies of the ith 
fundamental representation, i = 1, . . . , I ,  provides basis states for the IR ( i t ,  h2, . ..hi); 
we call such states wanted and all other (unstretched) states unwanted. An elementary 
unwanted state is one which does not contain as a factor an unwanted state of lower degree. 
It is the purpose of this appendix to show that all eIementary unwanted states are of degree 2. 

Consider a state belonging to the IR 1 of G which is contained in the direct product 
of the n IRs A,, . .., A,. In application 11, . . ., A. will be fundamental IRS but for now 
they are not necessarily so. Apply to our state the second order Casimir operator C, of G. 
Since it is of second degree in the generators of G it is a sum of parts which depend on the 
individual hi (i = 1, . . ., n) and parts which depend on pairs hi. A, (i > j = 1. . . . , n), 

According to Racah (1965) the eigenvalue of CZ acting on a state of the IR X is 

(MA t R)’ - RZ = M : + 2 M A .  R 

where M A  is the highest weight of h and R is the sum of the fundamental weights. Hence 
the part of Cz which depends on the individual IRs hi is 

We assume that the pairs hi, A, are coupled in a stretched way; otherwise even if our state 
is unwanted it would not be elementary. So the part of CZ which acts on Xi and Aj yields 
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and the part depending specifically on the pair is   MA, . MA,.  The complete eigenvalue of 
C1 is 

2 

e ( M ; ,  + 2% . R )  + 2  e  MA^ ,MA, = ($MA;)   MA, . R  
i=l i>J=l 

as if the coupling of A I ,  . . . , A, is completely stretched. This shows that the coupling is 
stretched, for any non-stretched coupling A would have MA closer to the origin of weight 
space and hence a smaller eigenvalue of C,. 

We complete the appendix by remarking that since the product of an incompatible set of 
fundamental basis states is one term in the expression for an unwanted state, the elementary 
incompatibilities are all between pairs of fundamental basis states (or one such state may 
be incompatible with itself). 
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